A study (DOI: 10.1093/hr/uhae145) conducted by the Institute of Agrophysics, Polish Academy of Sciences, and the Mediterranean Agronomic Institute of Chania, published on May 24, 2024, in Horticulture Research, explores the impact of AGPs on tomato ripening. Using advanced molecular and imaging techniques, the researchers examined how modifying the SlP4H3 gene, responsible for AGP synthesis, affects cell wall integrity during fruit ripening. The findings highlight the essential role of AGPs and other cell wall components in maintaining fruit quality.
The study centered on the SlP4H3 gene, which encodes proline hydroxylase, an enzyme critical for AGP synthesis. Altering this gene’s expression led to significant disruptions in cell wall structure, especially in the interactions between AGPs and other polysaccharides like homogalacturonans (HGs) and rhamnogalacturonan I (RG-I). Overexpression of SlP4H3 increased AGP content, while gene silencing resulted in a notable decrease. These changes caused visible morphological alterations in the fruit’s tissue, particularly during the red ripe stage, where cell walls exhibited excessive swelling and disrupted continuity. The study also linked these structural changes to the fruit’s softening process, underscoring the importance of AGP and pectin interactions in preserving fruit firmness and integrity during ripening.
Dr. Nataliia Kutyrieva-Nowak, a lead author, remarked, “Our findings highlight the critical role of AGPs and other cell wall components in tomato fruit ripening. By manipulating the SlP4H3 gene, we demonstrated that even subtle changes in cell wall structure can significantly affect the fruit’s texture and quality. This research opens new possibilities for improving postharvest storage and reducing fruit loss, key concerns in agriculture.”
The implications of this research extend significantly, particularly for enhancing the shelf life and quality of tomato fruits. Understanding the molecular mechanisms that drive fruit ripening could enable agricultural scientists to develop strategies to improve firmness and reduce spoilage during storage. Additionally, the study’s insights into AGPs’ role may guide the breeding of new tomato varieties with better texture and resilience to environmental stresses, benefiting both growers and consumers.
###
References
DOI
Original Source URL
https://doi.org/10.1093/hr/uhae145
Funding information
This research was funded by the National Science Center, Poland (SONATA 16, grant number 2020/39/D/NZ9/00232). Also, this work has been supported by the COST Action ‘Roxy-COST’ (CA:18210) which is funded by the European Cooperation in Science & Technology. Also, work has been financed by the European Regional Development Fund of the European Union and Greek national funds through the Operational Competitiveness, Entrepreneurship and Innovation, under the call RESEARCH-CREATE-INNOVATE (project code: T2EDK-01332: n-Tomatomics – Development of new tomato cultivars by using -omics technologies).
About Horticulture Research
Horticulture Research is an open access journal of Nanjing Agricultural University and ranked number one in the Horticulture category of the Journal Citation Reports ™ from Clarivate, 2023. The journal is committed to publishing original research articles, reviews, perspectives, comments, correspondence articles and letters to the editor related to all major horticultural plants and disciplines, including biotechnology, breeding, cellular and molecular biology, evolution, genetics, inter-species interactions, physiology, and the origination and domestication of crops.