The first study will analyze the effectiveness of treating multiple surface types with a zeolite coating, specially formulated by ZeovationÓ. Zeolite is a naturally occurring mineral that is widely produced commercially for its antimicrobial properties. This study aims to determine whether various surfaces treated with a zeolite coating can produce non-toxic, long-lasting, self-renewing decontamination properties against SARS-CoV-2, as well as flu, mold and bacteria. While there are products on the market that decontaminate surfaces, one limitation is the weakening of effectiveness over time requiring reapplication.
“We aim to look at how fast the coating works, meaning how soon after coating a surface will it display antimicrobial properties,” explained Dr. Mallory. “We want to also look at how long the antimicrobial properties last on each surface, and of course, what microbes it works against.”
The study will test at least a dozen materials ranging from cotton and synthetics to metals and plastics and will look at duration of exposure from hours to days. The researchers also aim to study various application strategies including painted coating versus a spray coating to determine if method of application impacts effectiveness.
Drs. Martinez-Sobrido and Torrelles will be performing these studies in vitro, testing multiple materials inside Texas Biomed’s state-of-the-art Biosafety Level 3 (BSL3) facilities. The goal is to determine if zeolite coating can prevent spreading of respiratory infections such as SARS-CoV-2 by preventing transmission through contaminated surfaces.
This first study will be combined with a second study (aerosol) to also determine whether the production of non-toxic low levels of hydrogen peroxide being circulated through the air can sanitize air (e.g. destroy airborne pathogens) as it is being expelled, so as people breath, talk, cough, etc. the air around them would be continuously disinfected, improving indoor air quality.
Dr. Martinez-Sobrido notes that, “Very low levels of hydrogen peroxide are safe to breathe, so we are testing whether significantly low levels of hydrogen peroxide gas, even lower than OSHA standards, can be pumped into contained spaces and inactivate microbes in an effort to reduce respiratory pathogens transmission, including SARS-CoV-2, through the air.” This technology originated in mold remediation, and while there are multiple systems on the market that provide this equipment, none have been tested against SARS-CoV-2 yet.
This two-part study will include in vitro studies tested by the Department of Defense and in vivo (animal model) studies at Texas Biomed in their Animal Biosafety Level 2 and 3 laboratories using multiple respiratory pathogens, including SARS-CoV-2.
“These technologies could greatly impact defense readiness by providing proactive solutions for our military personnel who often operate in close quarters,” Dr. Mallory stated. “Finding technologies that can be repurposed against SARS-CoV-2 and other respiratory pathogens for environments that our men and women in the armed forces find themselves in daily is critical to ensuring defensive readiness. And, these technologies will have applications for civilian populations, as well.”
“We are excited to learn whether these technologies, designed for other purposes, can play a crucial role in disinfecting spaces where people gather – places like ERs, dormitories, classrooms and more,” Dr. Torrelles said. “Ending this COVID-19 pandemic will require strategies for treating and vaccinating patients, but technologies that stop transmission prior to infection are also critical.”
###
About DoD Defense Health Agency
The Defense Health Agency (DHA) is a joint, integrated Combat Support Agency that enables the Army, Navy, and Air Force medical services to provide a medically ready force and ready medical force to Combatant Commands in both peacetime and wartime. The DHA supports the delivery of integrated, affordable, and high quality health services to Military Health System (MHS) beneficiaries and is responsible for driving greater integration of clinical and business processes across the MHS. The views expressed in this article are those of the authors and do not reflect the official views or policy of the Department of Defense or its Components.
About Texas Biomed
Texas Biomed is one of the world’s leading independent biomedical research institutions dedicated to eradicating infection and advancing health worldwide through innovative biomedical research. Texas Biomed partners with researchers and institutions around the world to develop vaccines and therapeutics against viral pathogens causing AIDS, hepatitis, hemorrhagic fever, tuberculosis and parasitic diseases responsible for malaria and schistosomiasis disease. The Institute has programs in host-pathogen interaction, disease intervention and prevention and population health to understand the links between infectious diseases and other diseases such as aging, cardiovascular disease, diabetes and obesity. For more information on Texas Biomed, go to www.TxBiomed.org.