As the researchers have now demonstrated for the first time in their recent publication, this photon gas can be cooled, for example, by a process known as adiabatic expansion. As in a real gas, the velocity differences of the particles decrease during cooling and the order in the signal sequence automatically increases. When the absolute temperature zero of 0 Kelvin is reached, all pulses propagate at exactly the same velocity.
The reverse process is also possible. “When the optical gas is heated, velocity differences increase”, explains Peschel. If all pulse velocities occur equally often, the disorder is at a maximum and the temperature is infinite – a state which cannot be reached in a real gas as it would require an infinite amount of energy. “In contrast, a periodic modulation of the refractive index can limit the range of allowed pulse velocities in the glass fibre. In this way, all available velocity states can be equally excited, creating a photon gas of infinite temperature. If even more energy is added, states of extreme velocities are preferentially populated – the photon gas becomes hotter than infinitely hot.
“For this state, which has so far only been described theoretically for light, a temperature below absolute zero is mathematically assumed”, says Peschel. He and his colleagues have now been able to create such a photon gas with negative temperature and show for the first time that it obeys conventional laws of thermodynamics. “Our results will contribute to a better understanding of the collective behaviour of large ensembles of optical signals. If we take the laws of thermodynamics into account, we can make optical data transmission more robust and reliable, for example by structuring pulse distributions to better match thermal distributions.”