Quantum computers have the potential for computational breakthroughs in classically unsolvable nuclear physics problems. Quantum sensors exploit distinct quantum phenomena that do not have classical counterparts, to acquire, process, and transmit information in ways that greatly exceed existing capabilities or sensitivities.
“Although we are just beginning to develop the knowledge and technology needed to power a revolutionary paradigm shift to quantum computing, there is a clear line of sight on how to proceed,” said Tim Hallman, DOE Associate Director of Science for Nuclear Physics. “These awards will contribute to advancing nuclear physics research and to pressing future quantum computing developments forward.”
The selected projects are at the forefront of interdisciplinary research in both fundamental research and use-inspired challenges at the interface of nuclear physics and QIS technologies. Projects include advancing the development of next generation materials and architectures for high coherence superconducting quantum bits, or “qubits,” and a solid-state quantum simulator for applications in nuclear theory. Projects will also develop quantum sensors to enhance sensitivity to new physics beyond the Standard Model and improve precision measurements of nuclear decays. The quantum computing projects explore difficult nuclear physics problems using hardware advantages offered by different near-term quantum platforms.
The projects were selected by competitive peer review under the DOE Funding Opportunity Announcement for Quantum Horizons: QIS Research and Innovation for Nuclear Science.
Total funding is $9.1 million for projects lasting up to 3 years in duration. The list of projects and more information can be found here.