To keep up with increasing data generation, data storage capacity has increased while electronic devices continue to get smaller and more powerful. However, this increase in data generation and storage has led to an associated increase in energy consumption. Data centers use a significant amount of electricity for their servers and cooling systems, and those centers alone account for more than 1% of global energy use. Spintronics has the potential to cut this energy consumption while allowing engineers to continue to design smaller and faster computers and other electronic devices.
“The ability to manipulate the arrangement of electronic spins, as well as their movement through material, has tremendous possibilities for more energy-efficient devices. This is the first step in demonstrating how to do it.” — Chang-Beom Eom, professor of materials science and engineering, University of Wisconsin-Madison
Instead of using electron charge to store information as 1’s and 0’s, spintronics uses electron spin to encode data. Spin is a property of electrons, just like charge. Electrons can have a spin state that is either up or down, and in some special materials this spin state can move across the material when it’s exposed to electricity. The ability for the spin state to be transported is what allows spin to be used for data storage. This method of spin manipulation for data storage uses much less energy because a spin current encounters less of the resistance that can lead to overheating, and the information does not disappear with a loss of power.
Researchers using the Advanced Photon Source (APS), a U.S. Department of Energy Office of Science User Facility at DOE’s Argonne National Laboratory, have been studying ways to manipulate electron spins and developing new materials for spintronics. Recently, a research team led by Chang-Beom Eom, a professor of materials science and engineering at the University of Wisconsin-Madison, published a study in the journal Nature Communications about a new material that has three times the storage density and uses much less power than other spintronics devices.
Not many of these types of materials exist, especially ones that work at room temperature like this one. If Eom’s material can be perfected, it could aid in the creation of more efficient electronic devices with less tendency to overheat. This is particularly important to advancing the development of low-power computing and fast magnetic memory.
The new structure Eom designed is based on an unusual class of materials called antiperovskites that he uses to manipulate the flow of spin information without moving the electrons’ charges through the material. To figure out if it worked, and to better understand the structure of the material, Eom’s team used X-ray diffraction at the APS to see at what point the structure of the material changed, indicating the emergence of the necessary arrangement of electronic spins.
Eom came to the APS because of the power of the 6-ID-B beamline as well as for the expertise of the scientists that work there.
“In one week of time at the APS we can do a month’s worth of work,” he said.
The APS’s beamline scientists provide expert advice to researchers looking to use the resources of the facility. Before the study, APS beamline scientists Phil Ryan and Jong-Woo Kim spent time with Eom, helping him determine when he had the right structure as he grew these new materials in his lab.
“If they have a scientific question, we discuss it and together design an experiment at APS to answer the question,” said Kim, a physicist at APS collaborating with Eom’s research team. “We understand our techniques and capabilities very well, so we can contribute to the design of the experiment, or even shape the conversation.”
For this study, Eom used the APS to look at the lattice structure of the material at the atomic level as it cooled toward room temperature. Using X-ray diffraction, they measured the lattice parameter — basically the distance between atoms — and extracted the separation of the atoms as the temperature of the material changed.
“This material develops a magnetic order a little above room temperature,” said Ryan, another physicist at APS who worked with Eom on this project as well as many others over the years. “Once the electron spins order themselves, the atoms are pushed slightly away from each other. So even though we couldn’t directly detect the structure with X-rays, we monitored and measured this structural change with temperature at the APS to confirm the emergence of this magnetic order.”
This was one of the three techniques used in the study to measure the arrangement of electronic spins, and this data, in conjunction with other measurements, helped solidify and cement the validity of the findings.
“The ability to manipulate the arrangement of electronic spins, as well as their movement through material, has tremendous possibilities for more energy-efficient devices,” Eom said. “This is the first step in demonstrating how to do it.”
About the Advanced Photon Source
The U. S. Department of Energy Office of Science’s Advanced Photon Source (APS) at Argonne National Laboratory is one of the world’s most productive X-ray light source facilities. The APS provides high-brightness X-ray beams to a diverse community of researchers in materials science, chemistry, condensed matter physics, the life and environmental sciences, and applied research. These X-rays are ideally suited for explorations of materials and biological structures; elemental distribution; chemical, magnetic, electronic states; and a wide range of technologically important engineering systems from batteries to fuel injector sprays, all of which are the foundations of our nation’s economic, technological, and physical well-being. Each year, more than 5,000 researchers use the APS to produce over 2,000 publications detailing impactful discoveries, and solve more vital biological protein structures than users of any other X-ray light source research facility. APS scientists and engineers innovate technology that is at the heart of advancing accelerator and light-source operations. This includes the insertion devices that produce extreme-brightness X-rays prized by researchers, lenses that focus the X-rays down to a few nanometers, instrumentation that maximizes the way the X-rays interact with samples being studied, and software that gathers and manages the massive quantity of data resulting from discovery research at the APS.
This research used resources of the Advanced Photon Source, a U.S. DOE Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357.
Argonne National Laboratory seeks solutions to pressing national problems in science and technology. The nation’s first national laboratory, Argonne conducts leading-edge basic and applied scientific research in virtually every scientific discipline. Argonne researchers work closely with researchers from hundreds of companies, universities, and federal, state and municipal agencies to help them solve their specific problems, advance America’s scientific leadership and prepare the nation for a better future. With employees from more than 60 nations, Argonne is managed by UChicago Argonne, LLC for the U.S. Department of Energy’s Office of Science.
The U.S. Department of Energy’s Office of Science is the single largest supporter of basic research in the physical sciences in the United States and is working to address some of the most pressing challenges of our time. For more information, visit https://energy.gov/science.