The team began by growing human red blood cells infected with the malaria parasite in the lab, then manipulated the parasites to enter their sexual life stage. The scientists then treated these parasites with one of the sulphonamide compounds to find out which parasite proteins were being targeted by the transmission-blocking compounds. To do so, the scientists applied ‘click chemistry’, an approach that won the 2022 Nobel Prize in Chemistry to attach a chemical label to the sulphonamide compounds. This label would then tag any parasite proteins that came in contact with them. This technique identified a parasitic protein called Pfs16 as forming the strongest bond with drug. Interestingly, Pfs16 is important for sexual conversion of the malaria parasite. The team then performed additional experiments to confirm that the sulphonamides bind Pfs16 and, importantly, block its function.
The scientists then wanted to pin down the exact point in the parasites’ sexual phase that was being targeted by the sulphonamides. After malaria parasites commit to either male or female forms in human blood, they can be transmitted to mosquitoes and once in the mosquito gut develop to a more mature sexual phase. These mature male and female parasites – similar to the human egg and sperm – then fuse to enable sexual reproduction. The newly reproduced parasites undergo further maturation and are then transferred by the mosquito to infect more humans. The process of sexual maturation, which normally occurs in the mosquito gut, can be activated artificially in the lab and takes roughly 10-25 minutes in total. The authors found that the sulphonamide compounds specifically targeted male parasites and uniquely inhibited their sexual maturation if administered to the parasite within the first 6 minutes of the sexual maturation process, which is the same time that the parasitic protein target, Pfs16, plays an important role in blocking male parasite maturation. By identifying the compound’s target and window of activity, this work provides a more precise understanding of the parasites’ life cycle stage during which this class of sulphonamides are effective. It also highlights the unique ability of these compounds to rapidly block sexual maturation, and by extension, malaria parasite transmission, by targeting the important parasite protein, Pfs16.
Overall, Baum and colleagues have identified how this new class of antimalarials block the parasite reaching sexual maturity, and therefore, their spread from human to human via a mosquito bite. This is an important step in developing effective new drugs to reduce the massive number of new malaria cases worldwide. Once thoroughly developed and tested, these compounds could be given to patients with malaria alongside existing therapies for treating their symptoms, to prevent the parasite being spread to more individuals. Professor Baum also stated that, ‘the unique ability of this class of sulphonamides to potently block sexual maturation of the parasite with almost immediate impact makes the direct delivery of the compounds to the mosquito a very appealing alternative administration strategy’. This exciting alternative strategy could be achieved by coating mosquito nets or sugar baits with the compounds. More research is underway to explore and refine the activity of this class of sulphonamides for use either in humans or directly with mosquitoes, but nevertheless, this study expands the breadth of strategies available to use in the fight against malaria.