In a new study (https://doi.org/10.1016/j.crcon.2023.100210) published in the KeAi journal Carbon Resources Conversion, a team of researchers in Greece reported innovative approaches to harnessing the potential of crude glycerol. They utilized it as a substrate for natural yeasts of the Generally Recognized As Safe (GRAS) species Yarrowia lipolytica. This method resulted in the production of valuable compounds such as sugar-alcohols (mannitol, arabitol, and erythritol), as well as other metabolites including citric acid, yeast biomass, and polysaccharides.
“In the context of the industrial scale, the production of polyols through the use of crude glycerol could significantly contribute to the recycling of this residue that is generated in constantly increasing quantities worldwide, offering a ‘green’ alternative on the protection of the environment, as huge amounts of the mentioned residue can be successfully used to produce high added-value products with a plethora of applications in the food, pharmaceutical and chemical sectors”.
“Therefore, the use of microorganisms is a topic that needs further investigation as it could demonstrate the possibility of various yeasts, to be used as microbial cell factories in various glycerol utilization processes, with the production of biotechnological products and yeast biomass, of utmost importance for food, pharmaceutical and chemical applications,” shares corresponding author Seraphim Papanikolaou. “It is worth emphasizing that the biochemical pathway of polyol synthesis has not yet been fully elucidated, making such a study highly attractive and interesting. Consequently, the production of polyols from industrial by-products is an important area of focus for food biotechnology, offering dual benefits of environmental enhancement and economic advancement.”
###
References
DOI
Original Source URL
https://doi.org/10.1016/j.crcon.2023.100210
Funding information
1. The current investigation was financially supported by the project entitled “Adding value to biodiesel-derived crude glycerol with the use of Chemical and Microbial Technology” (Acronym: Addvalue2glycerol, project code Τ1ΕΔΚ-03002) financed by the Ministry of National Education and Religious Affairs, Greece (project action: “Investigate – Create – Innovate 2014-2020, Intervention II”).
2. «The implementation of the doctoral thesis was co-financed by Greece and the European Union (European Social Fund-ESF) through the Operational Programme «Human Resources Development, Education and Lifelong Learning» in the context of the Act “Enhancing Human Resources Research Potential by undertaking a Doctoral Research” Sub-action 2: IKY Scholarship Programme for PhD candidates in the Greek Universities».
Journal