Osteoporosis is a systemic bone disease, which leads to decreased bone mass and an increased risk of fragility fractures. Currently, there are many anti-resorption drugs and osteosynthesis drugs, which are effective in the treatment of osteoporosis, but their usage is limited due to their contraindications and side effects. In regenerative medicine, the unique repair ability of mesenchymal stem cells (MSCs) has been favored by researchers. The exosomes secreted by MSCs have signal transduction and molecular delivery mechanisms, which may have therapeutic effects. In this review, we describe the regulatory effects of MSCs-derived exosomes on osteoclasts, osteoblasts, and bone immunity. We aim to summarize the preclinical studies of exosome therapy in osteoporosis. Furthermore, we speculate that exosome therapy can be a future direction to improve bone health.
Core Tip: Osteoporosis is one of the major diseases endangering bone health in the elderly. The existing treatment drugs have problems such as long-term administration and side effects; thus, it is fundamentally difficult to cure osteoporosis. Exosomes derived from mesenchymal stem cells (MSCs) are vesicles that deliver signals and molecules between cells and have shown substantial positive effects in pre-clinical trials. In this review, we summarize the latest progress of MSCs-derived exosomes in the regulation of bone metabolism.
- Citation: Huo KL, Yang TY, Zhang WW, Shao J. Mesenchymal stem/stromal cells-derived exosomes for osteoporosis treatment. World J Stem Cells 2023; 15(3): 83-89
- URL: https://www.wjgnet.com/1948-0210/full/v15/i3/83.htm
- DOI: https://dx.doi.org/10.4252/wjsc.v15.i3.83