Researchers unveil roadmap to expand NY solar energy, meet green goals

Solar-power developers need to explore using lower-quality agricultural land for solar energy, incentivize dual-use (combined agriculture and solar) options, avoid concentrated solar development and engage communities early to achieve New York’s green energy goals, according to forthcoming Cornell University research.

RENEWABLE ENERGY GRANTS

University of Delaware researchers William Shafarman (left) and Jeremy Firestone each will lead new studies, each supported by $2 million in new grants from the U.S. Department of Energy. Shafarman, director of UD’s Institute of Energy Conversion, will focus on solar panel manufacturing and efficiency. Firestone, director of UD’s Center for Research in Wind, will look at factors that affect consumers’ decisions about solar rooftop panels and/or electric vehicles.

Squeezing a rock-star material could make it stable enough for solar cells

A promising lead halide perovskite is great at converting sunlight to electricity, but it breaks down at room temperature. Now scientists have discovered how to stabilize it with pressure from a diamond anvil cell. The required pressure is well within the reach of today’s manufacturing processes.

Greenland Melting Likely Increased by Bacteria in Sediment

Bacteria are likely triggering greater melting on the Greenland ice sheet, possibly increasing the island’s contribution to sea-level rise, according to Rutgers scientists. That’s because the microbes cause sunlight-absorbing sediment to clump together and accumulate in the meltwater streams, according to a Rutgers-led study – the first of its kind – in the journal Geophysical Research Letters. The findings can be incorporated in climate models, leading to more accurate predictions of melting, scientists say.

Driving Water Splitting to Create Chemical Fuels

Scientists improved the performance of bismuth vanadate, an electrode material for converting solar energy to hydrogen—an energy-dense and clean-burning fuel.

Materials developed at Sandia help extinguish solar panel fires before they ignite

Sandia National Laboratories has spent 10 years working alongside local company Guardian Sensors Inc. to understand and characterize hazardous arc-faults. Their work led to development of electrical in-line connectors that automatically predict and prevent photovoltaic arc-faults before they can ignite fires.

Photovoltaics Industry Can Help Meet Paris Agreement Targets

To meet the Paris Agreement’s goal of preventing Earth’s average temperature from rising more than 2 degrees Celsius above preindustrial level, one of the best options for the energy economy will involve a shift to 100% renewable energy using solar energy and other clean energy sources. In the Journal of Renewable and Sustainable Energy, researchers describe a model developed to predict what is necessary for the solar industry to meet Paris Agreement targets.

Promising Strategies for Durable Perovskite Solar Cells

Perovskite materials are increasingly popular as the active layer in solar cells, but internal forces in these materials cause distortions in their crystal structures, reducing symmetry and contributing to their intrinsic instability. Researchers at Soochow University examined the mechanisms at play, as well as several degradation factors that influence the performance of perovskite photovoltaics. In APL Materials, they clarified the factors influencing the degradation and they summarized some feasible approaches for durable perovskite photovoltaics.

Blocking vibrations that remove heat could boost efficiency of next-gen solar cells

Led by the Department of Energy’s Oak Ridge National Laboratory and the University of Tennessee, Knoxville, a study of a solar-energy material with a bright future revealed a way to slow phonons, the waves that transport heat.

Tulane University launches new degree program in renewable energy

With the growing role of renewables in the nation’s energy mix, Tulane University’s A. B. Freeman School of Business has launched a program to teach students how to bring renewable and sustainable energy projects from concept to completion.

Climate Change Impact on Green Energy Production

As the climate of the planet is changing, many researchers are looking to more renewable energy sources. In the Journal of Sustainable and Renewable Energy, researchers investigate whether the power generated by solar and wind farms would differ between current and future climates. The researchers focused on sites in Australia where variable renewable generators are located or are likely to be located in the future based on the Australian Energy Market Operator’s system plan.

Geoengineering is Just a Partial Solution to Fight Climate Change

Could we create massive sulfuric acid clouds that limit global warming and help meet the 2015 Paris international climate goals, while reducing unintended impacts? Yes, in theory, according to a Rutgers co-authored study in the journal Earth System Dynamics. Spraying sulfur dioxide into the upper atmosphere at different locations, to form sulfuric acid clouds that block some solar radiation, could be adjusted every year to keep global warming at levels set in the Paris goals. Such technology is known as geoengineering or climate intervention.

Newer Solar Power Equipment Ages Better Than Older Units

Utility-scale photovoltaics are the largest sector of the overall solar market within the U.S. and the fastest-growing form of renewable power generation, and this fleet of utility-scale photovoltaic projects is relatively young and hasn’t been operating long enough to establish a lengthy history of operational field service. In the Journal of Renewable and Sustainable Energy, researchers assess the performance of 411 utility-scale photovoltaic projects built within the U.S. from 2007 through 2016.

At the Interface of Organic Chemistry and Nanotechnology with Adam Braunschweig

Adam Braunschweig—a CUNY ASRC associate professor—is a user at Brookhaven Lab’s Center for Functional Nanomaterials (CFN) studying how molecules in organic semiconductor thin films pack together.

Finding Balance Between Green Energy Storage, Harvesting

Generating power through wind or solar energy is dependent on the abundance of the right weather conditions, making finding the optimal strategy for storage crucial to the future of sustainable energy usage. Research published in the Journal of Renewable and Sustainable Energy identifies key indicators that will help achieve balance between green energy storage capacity and harvesting capability and determine the energy potential of a region.

Tests Measure Solar Panel Performance Beyond Established Standards

In testing solar panels, the sun’s intensity, the spectral composition and the angle of light are important factors in understanding why certain panels are successful and others degrade more quickly. To address the knowledge gap in degradation mechanisms for various photovoltaic types, researchers performed tests over five years in which they collected weather data and panel performance information. The results are published in the Journal of Renewable and Sustainable Energy.

Go With the Flow: Scientists Design New Grid Batteries for Renewable Energy

Scientists at Berkeley Lab have designed an affordable ‘flow battery’ membrane that could accelerate renewable energy for the electrical grid.

Scientists Discover Key Factors in How Some Algae Absorb Solar Energy

Scientists have discovered how diatoms – a type of algae that produces 20 percent of the Earth’s oxygen – absorb solar energy for photosynthesis. The Rutgers University-led discovery, published in the journal Proceedings of the National Academy of Sciences, could help lead to more efficient and affordable algae-based biofuels and combat climate change from fossil fuel burning.

rooftop-solarpannels

Tufts adds new solar energy systems, expands its commitment to clean energy

New additions will increase energy savings, reduce costs MEDFORD/SOMERVILLE, Mass. (June 26, 2019) – Two new roof-mounted solar photovoltaic installations on buildings located on the Medford/Somerville campus of Tufts University will generate 161,000 kilowatt hours of renewable energy for the…