Light it up: uOttawa researchers demonstrate practical metal nanostructures

Researchers at the University of Ottawa have debunked the decade-old myth of metals being useless in photonics – the science and technology of light – with their findings, recently published in Nature Communications, expected to lead to many applications in…

Study finds plants would grow well in solar cell greenhouses

A recent study shows that lettuce can be grown in greenhouses that filter out wavelengths of light used to generate solar power, demonstrating the feasibility of using see-through solar panels in greenhouses to generate electricity. “We were a little surprised…

New perovskite LED emits a circularly polarized glow

Light-emitting diodes (LEDs) have revolutionized the displays industry. LEDs use electric current to produce visible light without the excess heat found in traditional light bulbs, a glow called electroluminescence. This breakthrough led to the eye-popping, high-definition viewing experience we’ve come…

An electrically charged glass display smoothly transitions between a spectrum of colors

Scientists have developed a see-through glass display with a high white light contrast ratio that smoothly transitions between a broad spectrum of colors when electrically charged. The technology, from researchers at Jilin University in Changchun, China, overcomes limitations of existing…

Producing highly efficient LEDs based on 2D perovskite films

Energy-efficient light-emitting diodes (LEDs) have been used in our everyday life for many decades. But the quest for better LEDs, offering both lower costs and brighter colours, has recently drawn scientists to a material called perovskite. A recent joint-research project…

A liquid crystal walks into an optical resonator: new Skoltech research helps model future optoelect

Researchers at Skoltech and their colleagues proposed a photonic device from two optical resonators with liquid crystals inside them to study optical properties of this system that can be useful for future generations of optoelectronic and spinoptronic devices. The paper…

New technique brings the study of molecular configuration into the microscopic domain

Researchers have developed a spectroscopic microscope to enable optical measurements of molecular conformations and orientations in biological samples. The novel measurement technique allows researchers to image biological samples at the microscopic level more quickly and accurately. The new instrument is…

Twistoptics—A New Way to Control Optical Nonlinearity

Columbia Engineering researchers report that they developed a new, efficient way to modulate and enhance an important type of nonlinear optical process: optical second harmonic generation—where two input photons are combined in the material to produce one photon with twice the energy—from hexagonal boron nitride through micromechanical rotation and multilayer stacking. Their work is the first to exploit the dynamically tunable symmetry of 2D materials for nonlinear optical applications.

New microcomb could help discover exoplanets and detect diseases

Tiny photonic devices could be used to find new exoplanets, monitor our health, and make the internet more energy efficient. Researchers from Chalmers University of Technology, Sweden, now present a game changing microcomb that could bring advanced applications closer to…

Heat-free optical switch would enable optical quantum computing chips

In a potential boost for quantum computing and communication, a European research collaboration reported a new method of controlling and manipulating single photons without generating heat. The solution makes it possible to integrate optical switches and single-photon detectors in a…

Mantis shrimp inspires new breed of light sensors

Inspired by the eyes of mantis shrimp, researchers have developed a new kind of optical sensor that is small enough to fit on a smartphone but is capable of hyperspectral and polarimetric imaging. “Lots of artificial intelligence (AI) programs can…