Multiplication on, multiplication off: Targeting an enzymatic switch to develop oncology drugs

Interdisciplinary research highlighted lipid-protein interaction as a new avenue for oncology drug development, demonstrating its functionality by designing small molecule-based inhibitors to target acute myeloid leukemia.

COVID-19 research campaign moves from basic science to antiviral drug design

ORNL researchers have developed and tested novel small-molecule antivirals in an effort to design new drugs to treat COVID-19. The so called hybrid inhibitor molecules are made from repurposed drugs used to treat hepatitis C and the original coronavirus outbreak in the early 2000s. The experimental research results show the molecules are similarly as effective as some of the leading drugs on the market today.

Antibiotic resistance outwitted by supercomputers

Scientists may have made a giant leap in fighting the biggest threat to human health by using supercomputing to keep pace with the impressive ability of diseases to evolve.
A new study by an international team, co-led by Dr Gerhard Koenig from the University of Portsmouth, tackled the problem of antibiotic resistance by redesigning existing antibiotics to overcome bacterial resistance mechanisms.

Avoiding Drug Resistance by Understanding Evolution of Viruses

During ACA’s 71st annual meeting, Celia Schiffer, from the University of Massachusetts, will talk about her lab’s work with virus substrate recognition as a method to avoid drug resistance. Schiffer and her team expanded their work on HIV and the hepatitis C virus to include human T-cell lymphotropic virus type 1 and SARS-CoV-2, the virus that causes COVID-19, and discovered that designing robust inhibitors to fit within the substrate envelope tips this balance toward decreasing the probability of resistance.

DOE scientists deploy creativity, speed to disrupt COVID-19

An ORNL-led team comprising researchers from multiple DOE national laboratories is using artificial intelligence and computational screening techniques – in combination with experimental validation – to identify and design five promising drug therapy approaches to target the SARS-CoV-2 virus.

X-ray study explores potential of hepatitis C drugs to treat COVID-19

Researchers at the Department of Energy’s Oak Ridge National Laboratory investigated the binding properties of several hepatitis C drugs to determine how well they inhibit the SARS-CoV-2 main protease, a crucial protein enzyme that enables the novel coronavirus to reproduce. Inhibiting, or blocking, the protease from functioning is vital to stopping the virus from spreading in patients with COVID-19.