Organic Memory Devices Show Promise for Flexible, Wearable, Personalized Computing

The advent of artificial intelligence, machine learning and the internet of things is expected to change modern electronics. The pressing question for many researchers is how to handle this technological revolution. Brain-inspired electronics with organic memristors could offer a functionally promising and cost- effective platform. Since memristors are functionally analogous to the operation of neurons, the computing units in the brain, they are optimal candidates for brain-inspired computing platforms.

Recipe for Neuromorphic Processing Systems?

The field of “brain-mimicking” neuromorphic electronics shows great potential for basic research and commercial applications, and researchers in Germany and Switzerland recently explored the possibility of reproducing the physics of real neural circuits by using the physics of silicon. In Applied Physics Letters, they present their work to understand neural processing systems, as well as a recipe to reproduce these computing principles in mixed signal analog/digital electronics and novel materials.

ORNL researchers develop ‘multitasking’ AI tool to extract cancer data in record time

To better leverage cancer data for research, scientists at ORNL are developing an artificial intelligence (AI)-based natural language processing tool to improve information extraction from textual pathology reports. In a first for cancer pathology reports, the team developed a multitask convolutional neural network (CNN)—a deep learning model that learns to perform tasks, such as identifying key words in a body of text, by processing language as a two-dimensional numerical dataset.

The Big Questions: Ian Foster on High-Performance Computing

The Big Questions series features perspectives from the five recipients of the Department of Energy Office of Science’s 2019 Distinguished Scientists Fellows Award describing their research and what they plan to do with the award. Ian Foster is the director of Argonne National Laboratory’s Data Science and Learning Division.

Reinventing the Computer: Brain-Inspired Computing for a Post-Moore’s Law Era

Since 1947, computing development has seen a consistent doubling of the number of transistors that can fit on a chip. But that trend, Moore’s Law, may reach its limit as components of submolecular size encounter problems with thermal noise, making further scaling impossible. In this week’s Applied Physics Reviews, researchers present an examination of the computing landscape, focusing on functions needed to advance brain-inspired neuromorphic computing.

Wireless networking researcher wins Air Force’s Young Investigator Award for research into smart drones

Northern Arizona University assistant professor Fatemeh Afghah is one of 40 recipients of the grant, given to foster creative basic research in science and engineering, enhance career development and provide opportunities for engineers to address military challenges in science and engineering.

Machine learning analyses help unlock secrets of stable ‘supercrystal’

By blasting a frustrated mixture of materials with quick pulses of laser light, researchers transformed a superlattice into a supercrystal, a rare, repeating, three-dimensional structural much larger than an ordinary crystal. Using machine learning techniques, they studied the underlying structure of this sample at the nanoscale level before and after applying the laser pulse treatment.

NUS deep-learning AI system puts Singapore on global map of big data analytics

⎯ A team of researchers from the National University of Singapore (NUS) has put Singapore on the global map of Artificial Intelligence (AI) and big data analytics. Their open-source project, called Apache SINGA, “graduated” from the Apache Incubator on 16 October 2019 and is now Southeast Asia’s first Top-Level Project (TLP) under the Apache Software Foundation, the world’s largest open-source software community.

The Technological Heavyweight You’ve Probably Never Heard Of: ESnet

Since that first computer more than 30 years ago, ESnet has expanded to connect more than 40 major research institutions at speeds 15,000 times faster than a home network. From acting as an early adopter of protocols that now run the internet to making today’s scientific discoveries possible, ESnet is the big player in the internet you’ve probably never heard of.