Highly Sensitive Sensors Show Promise in Enhancing Human Touch

People rely on a highly tuned sense of touch to manipulate objects, but injuries to the skin and the simple act of wearing gloves can impair this ability. In this week’s Applied Physics Reviews, scientists report the development of a new tactile-enhancement system based on a highly sensitive sensor. The sensor has remarkable sensitivity, allowing the wearer to detect the light brush of a feather. This crack-based sensor was inspired by a spider’s slit organ.

Read more

Insects’ Drag-Based Flight Mechanism Could Improve Tiny Flying Robots

Thrips don’t rely on lift in order to fly. Instead, the tiny insects rely on a drag-based flight mechanism, keeping themselves afloat in airflow velocities with a large ratio of force to wing size. In a study published in this week’s Journal of Applied Physics, researchers performed the first test of the drag force on a thrip’s wing under constant airflow in a bench-top wind tunnel. Drawing from experience in microfabrication and nanomechanics, they created an experiment in which a thrip’s wing was glued to a self-sensing microcantilever.

Read more