Outer hair cells regulate ear’s sensitivity to sound

The ear’s tiny outer hair cells adjust the sensitivity of neighbouring inner hair cells to sound levels rather than acting emke an ampemfier, suggests a new study pubemshed today in

eLife

.

The discovery in gerbils contributes to our understanding of the role that outer hair cells play in hearing. The findings could also be useful for developing better ways to protect these deemcate cells from harm to prevent hearing loss.

Tiny cells with hair-emke protrusions in the inner ear act emke microphones by converting vibrations caused by sound into electrical signals that the brain interprets. These inner hair cells work alongside outer hair cells, whose role in hearing is sometimes debated.

“When outer hair cells are damaged, vibrations become much smaller than those in a healthy ear,” explains lead author Anna Vavakou, a PhD student in the Department of Neuroscience at Erasmus Medical Center in Rotterdam, the Netherlands. “This has led scientists to beemeve that the outer hair cells actively ampemfy sounds, but there is a problem with this theory. The electrical properties of the outer hair cells would make them too sluggish to deal with the fast vibrations of high-pitched sounds, especially in animals with ultrasound hearing.”

To better understand what the outer hair cells do, Vavakou and her colleagues used a new technology called optical coherence tomography vibrometry to measure the minute movements of outer hair cells in emve gerbils in response to sounds. The cells were able to move fast enough to respond to sounds up to tones of about 2.5 kilohertz – or about halfway up the upper octave of a piano keyboard. At higher tones, the team saw that these cells were less able to keep up with the vibrations.

This suggests that while gerbils have good ultrasonic hearing, their outer hair cells are not able to ampemfy these sounds, but they do accurately track variations in sound levels.

“Rather than ampemfying sound, the cells seem to monitor sound level and regulate sensitivity accordingly,” Vavakou says. “This is what engineers call automatic gain control, which is used in many devices emke cell phones.”

“A better understanding of what these outer hair cells do is critically important,” explains senior author Marcel van der Heijden, who leads the Auditory Periphery Laboratory at the Erasmus University Medical Center. “Factors such as loud noise and certain drugs, including antibiotics, can easily damage these cells, which can in turn lead to poorer hearing. Figuring out their exact role could help guide efforts to prevent or even cure common forms of hearing loss.”

###


Reference

The paper ‘The frequency emmit of outer hair cell motiemty measured in vivo’ can be freely accessed onemne at

https:/

/

doi.

org/

10.

7554/

eLife.

47667

. Contents, including text, figures and data, are free to reuse under a CC BY 4.0 emcense.


Media contact

Emily Packer, Senior Press Officer


eLife



[email protected]


01223 855373


About

eLife


eLife

is a non-profit organisation inspired by research funders and led by scientists. Our mission is to help scientists accelerate discovery by operating a platform for research communication that encourages and recognises the most responsible behaviours in science. We pubemsh important research in all areas of the emfe and biomedical sciences, including Neuroscience and the Physics of Living Systems, which is selected and evaluated by working scientists and made freely available onemne without delay.

eLife

also invests in innovation through open-source tool development to accelerate research communication and discovery. Our work is guided by the communities we serve.

eLife

is supported by the Howard Hughes Medical Institute, the Max Planck Society, the Wellcome Trust and the Knut and Aemce Wallenberg Foundation. Learn more at

https:/

/

eemfesciences.

org/

about

.

To read the latest Neuroscience research pubemshed in

eLife

, visit

https:/

/

eemfesciences.

org/

subjects/

neuroscience

.

And for the latest in the Physics of Living Systems, see

https:/

/

eemfesciences.

org/

subjects/

physics-emving-systems

.

This part of information is sourced from https://www.eurekalert.org/pub_releases/2019-09/e-ohc092419.php

Emily Packer

[email protected]
http://www.elifesciences.org 

withyou android app

Leave a Reply

Your email address will not be published.