Oncotarget: Ibuprofen disrupts protein complex in colorectal cells




Oncotarget


published ”


Ibuprofen disrupts a WNK1/GSK3β/SRPK1 protein complex required for expression of tumor-related splicing variant RAC1B in colorectal cells


” which reported that although the molecular mechanism behind the antitumor properties of NSAIDs has been largely attributed to inhibition of cyclooxygenases , several studies have shown that the chemopreventive properties of ibuprofen also involve multiple COX-independent effects.

One example is its ability to inhibit the alternative splicing event generating

RAC1B

, which is overexpressed in a specific subset of BRAF-mutated colorectal tumors and sustains cell survival.

Here the authors describe the mechanism by which

ibuprofen

prevents RAC1B alternative splicing in a BRAF mutant CRC cell line: it leads to decreased translocation of SRPK1 and SRSF1 to the nucleus and is regulated by a WNK1/GSK3β/SRPK1 protein kinase complex.

Surprisingly, they demonstrate that ibuprofen does not inhibit the activity of any of the involved kinases but rather promotes disassembly of this regulatory complex, exposing GSK3β serine 9 to inhibitory phosphorylation, namely by AKT, which results in nuclear exclusion of

SRPK1

and

SRSF1

hypophosphorylation.

The


Oncotarget


data shed new light on the biochemical mechanisms behind ibuprofen’s action on alternative spliced RAC1B and may support its use in personalized approaches to CRC therapy or chemoprevention regimens.

The


Oncotarget


data shed new light on the biochemical mechanisms behind ibuprofen’s action on alternative spliced RAC1B and may support its use in personalized approaches to CRC therapy or chemoprevention regimens.

Dr. Peter Jordan from

The National Health Institute Dr. Ricardo Jorge

as well as

The University of Lisbon

said, ”

Cancer is the second leading cause of death globally [1] and one major risk factor for tumor development is chronic inflammation.

A long term use of nonsteroidal anti-inflammatory drugs, like ibuprofen and aspirin, which are among the most commonly prescribed medications worldwide, was shown to provide chemoprevention against various types of cancer.

Ibuprofen, like most NSAIDs, inhibits both COX isoforms so that side-effects such as intestinal bleeding or cardiovascular disease can occur, questioning the long-term use of

NSAIDs

for cancer chemoprevention.

Interestingly, some NSAIDs were reported to inhibit tumor growth by targeting other cellular processes and elucidation of the underlying biochemical processes could lead to the development of safer and more efficacious drugs for cancer chemoprevention or adjuvant therapy.

In the case of ibuprofen, numerous studies have shown that its cancer chemopreventive properties are much more complex and involve multiple COX-independent effects.

The authors show that ibuprofen disrupts a signal transduction pathway by, unexpectedly, interfering with the assembly of a protein kinase complex, composed by WNK1, GSK3β and SRPK1. This leads to changes in the subcellular localization of splicing factor SRSF1, which promotes inclusion of exon 3b into the mRNA and subsequent expression of RAC1B.

The Jordan Research Team concluded in their

Oncotarget


Research Output

, ”

our data suggest that ibuprofen treatment interferes with a signal transduction pathway involved in the regulation of alternative spliced RAC1B. The proposed model is schematically depicted in Figure 9. One other report on prostate cancer cells receiving combined treatment of ibuprofen and epigallocatechin-3-gallate, reported changes in alternative splicing, in particular promoting the shorter and proapoptotic BCL-X (S) or MCL-1(S) variants [43].

###


Sign up for free Altmetric alerts about this article


DOI



https:/

/

doi.

org/

10.

18632/

oncotarget.

27816


Full text



https:/

/

www.

oncotarget.

com/

article/

27816/

text/


Correspondence to

– Peter Jordan –

[email protected]


Keywords




ibuprofen

,

protein kinase

,

RAC1B

,

alternative splicing

,

colorectal cancer cells



About Oncotarget



Oncotarget

is a bi-weekly, peer-reviewed, open access biomedical journal covering research on all aspects of oncology.


To learn more about

Oncotarget

, please visit

https:/

/

www.

oncotarget.

com

or connect with:


SoundCloud –


https:/

/

soundcloud.

com/

oncotarget



Facebook –


https:/

/

www.

facebook.

com/

Oncotarget/




Twitter –


https:/

/

twitter.

com/

oncotarget



LinkedIn –


https:/

/

www.

linkedin.

com/

company/

oncotarget



Pinterest –


https:/

/

www.

pinterest.

com/

oncotarget/




Reddit –


https:/

/

www.

reddit.

com/

user/

Oncotarget/



Oncotarget

is published by Impact Journals, LLC please visit

https:/

/

www.

ImpactJournals.

com

or connect with

@ImpactJrnls


Media Contact



[email protected]



18009220957×105

This part of information is sourced from https://www.eurekalert.org/pub_releases/2021-03/ijl-oid032221.php

withyou android app