Leptin puts the brakes on eating via novel neurocircuit



Philadelphia, April 6, 2021 –

Since the discovery of leptin in the 1990s, researchers have wondered, how does leptin, a hormone made by body fat, suppress appetite? Despite tremendous gains in the intervening three decades, many questions still remain. Now,

a new study

in mice describes novel neurocircuitry between midbrain structures that control feeding behaviors that are under modulatory control by leptin. The study appears in


Biological Psychiatry


, published by

Elsevier

.

John Krystal, MD, Editor of Biological Psychiatry, said of the findings, “Omrani and colleagues shed light on how, in non-obese animals, leptin puts the brakes on overeating.”

Leptin acts as a critical link between the body and the brain, providing information about metabolic state and exerting control over energy balance. The importance of leptin is illustrated by the finding that animals deficient for leptin rapidly become obese without its regulatory stop on feeding behavior.

Roger Adan, PhD, of the Department of Translational Neuroscience, University Medical Center Utrecht and University Utrecht, the Netherlands, who led the study, said, “This process is shaped by communication between bodily fat storages (via a hormone called leptin) and the brain’s dopamine reward system. This leptin-dopamine axis is critically important for body weight control, but its modes of action were not well understood.”

Leptin suppresses eating by signaling to brain regions that control eating behaviors, but it also decreases the reward value inherent in foods, engaging the brain’s dopamine (DA) reward system. That food-reward pathway was known to involve dopaminergic neurons of the ventral tegmental area (VTA) signaling to the nucleus accumbens (NAc), but most of those DA neurons do not contain receptors for leptin.

The work used a combination of powerful technologies, including optogenetics, chemogenetics and electrophysiology to map the new microcircuitry.

“Although leptin receptors are present on [some] dopamine neurons that signal food reward,” said Professor Adan, also of the Department of Translational Neuroscience, University Medical Center Utrecht and University Utrecht, “we discovered that leptin receptors are also present on inhibitory neurons that more strongly regulate the activity of dopamine neurons. Some of these inhibitory neurons suppressed food seeking when [animals were] hungry, whereas others [did so] only when [animals were] in a sated state.”

Dr. Krystal said of the study, “It turns out that leptin plays key modulatory roles in an elegant circuit that unites midbrain and limbic reward circuitry. By inhibiting hypothalamic neurons and ultimately suppressing the activity of dopamine neurons in the midbrain that signal reward and promote feeding, leptin reduces food intake in animals under conditions when caloric intake has exceeded energy use.”

Ultimately, Professor Adan said, “Targeting these neurons may provide a new avenue for the treatment of anorexia nervosa and to support dieting in people with obesity.”

###


Notes for editors

The article is “Identification of novel neurocircuitry through which leptin targets multiple inputs to the dopamine system to reduce food reward seeking,”by Azar Omrani, Veronne de Vrind, Bart Lodder, Iris Stoltenborg, Karlijn Kooij, Inge Wolterink-Donselaar, Mieneke Luijendijk-Berg, Keith Garner, Lisanne van ‘t Sant, Annemieke Rozeboom, Suzanne Dickson, Frank Meye, Roger Adan (

https:/

/

doi.

org/

10.

1016/

j.

biopsych.

2021.

02.

017

). It appears as an Article in Press in

Biological Psychiatry

, published by

Elsevier

.

Copies of this paper are available to credentialed journalists upon request; please contact Rhiannon Bugno at

[email protected]

“>

[email protected]

or +1 254 522 9700. Journalists wishing to interview the authors may contact Roger Adan at

[email protected]

“>

[email protected]

or +31 88 756 8517.

The authors’ affiliations and disclosures of financial and conflicts of interests are available in the article.

John H. Krystal, MD, is Chairman of the Department of Psychiatry at the Yale University School of Medicine, Chief of Psychiatry at Yale-New Haven Hospital, and a research psychiatrist at the VA Connecticut Healthcare System. His disclosures of financial and conflicts of interests are available

here

.


About

Biological Psychiatry



Biological Psychiatry


is the official journal of the

Society of Biological Psychiatry

, whose purpose is to promote excellence in scientific research and education in fields that investigate the nature, causes, mechanisms and treatments of disorders of thought, emotion, or behavior. In accord with this mission, this peer-reviewed, rapid-publication, international journal publishes both basic and clinical contributions from all disciplines and research areas relevant to the pathophysiology and treatment of major psychiatric disorders.

The journal publishes novel results of original research which represent an important new lead or significant impact on the field, particularly those addressing genetic and environmental risk factors, neural circuitry and neurochemistry, and important new therapeutic approaches. Reviews and commentaries that focus on topics of current research and interest are also encouraged.


Biological Psychiatry

is one of the most selective and highly cited journals in the field of psychiatric neuroscience

.

It is ranked 7

th

out of 155 Psychiatry titles and 12

th

out of 271 Neurosciences titles in the Journal Citations Reports® published by Clarivate Analytics. The 2019 Impact Factor score for Biological Psychiatry is 12.095.

http://www.

sobp.

org/

journal


About Elsevier

As a global leader in information and analytics,

Elsevier

helps researchers and healthcare professionals advance science and improve health outcomes for the benefit of society. We do this by facilitating insights and critical decision-making for customers across the global research and health ecosystems.

In everything we publish, we uphold the highest standards of quality and integrity. We bring that same rigor to our information analytics solutions for researchers, health professionals, institutions and funders.

Elsevier employs 8,100 people worldwide. We have supported the work of our research and health partners for more than 140 years. Growing from our roots in publishing, we offer knowledge and valuable analytics that help our users make breakthroughs and drive societal progress. Digital solutions such as

ScienceDirect

,

Scopus

,

SciVal

,

ClinicalKey

and

Sherpath

support strategic

research management

,

R&D performance

,

clinical decision support

, and

health education

. Researchers and healthcare professionals rely on our 2,500+ digitized journals, including


The Lancet


and


Cell


, our 40,000 eBook titles; and our iconic reference works, such as

Gray’s Anatomy

. With the

Elsevier Foundation

and our external

Inclusion & Diversity Advisory Board

, we work in partnership with diverse stakeholders to advance

inclusion and diversity

in science, research and healthcare in developing countries and around the world.

Elsevier is part of

RELX

, a global provider of information-based analytics and decision tools for professional and business customers.

http://www.

elsevier.

com


Media contact

Rhiannon Bugno, Editorial Office


Biological Psychiatry


+1 254 522 9700


[email protected]

This part of information is sourced from https://www.eurekalert.org/pub_releases/2021-04/e-lpt040621.php

withyou android app