Invention by a Finnish start-up speeds up coronavirus testing

On the surface, the product developed by Xfold looks like regular glass. However, its unique nanocoating makes it a powerful signal booster that can be integrated into existing microscopes. The nanocoating makes the image produced by a microscope up to dozens of times more accurate, which also opens up new possibilities in the fight against the coronavirus epidemic.

‘At the moment, coronavirus can be detected from a sample 3–5 days after exposure. Our technology reduces this time by up to 24 hours. It can also be used to observe the effect of medicines being studied more quickly, without any new equipment or work processes’, says Timo Jäntti, CEO of Xfold Imaging.

Launched at Aalto Startup Center in 2019, Xfold has tested its technology with biomedical and virology experts at Aalto University, the University of Helsinki, Viikki Biocenter and Biomedicum in Meilahti, as well as with many international research groups in Japan and the United States.

‘We have piloted our technology for investigating viruses with the University of Stanford, for example, and we have seen its potential for diagnosing coronavirus and testing related medicines. Our technology has opened up new avenues for researchers in the world of medicine’, Jäntti says.

Xfold directly employs three people. Funded by Business Finland and Butterfly Ventures, among others, the company is now focusing entirely on potential technological solutions to help combat the coronavirus epidemic. According to Jäntti, the greatest potential lies in poorer countries.

‘Our nanocoating can be added to almost any glass slides and sensors where samples are placed. It is a simple and affordable solution that could raise the diagnostic accuracy of health care laboratories in poorer countries to the level of Western countries’, Jäntti says.

In the future, the nanocoated glass could also speed up the development of many other medicines. Traditionally, cells under examination have to be bleached in order to inspect them with a microscope and take pictures of them. However, the bleaching process shortens the lifetime of the cells, which makes it difficult to investigate the effects of chemical substances, such as medicines. With nanocoated glass, bleaching is not required so that a live cell can be observed much longer.

‘Xfold imaging is an example of how technology can help us overcome this current crisis – and solve future ones. We at Aalto Startup Center want to be at the forefront with our contribution’, says Marika Paakkala, Head of Aalto Startup Center.

 

Original post https://alertarticles.info