Immunomodulation: The next target of mesenchymal stem cell-derived exosomes in the context of ischemic stroke

Ischemic stroke (IS) is the most prevalent form of brain disease, characterized by high morbidity, disability, and mortality. However, there is still a lack of ideal prevention and treatment measures in clinical practice. Notably, the transplantation therapy of mesenchymal stem cells (MSCs) has been a hot research topic in stroke. Nevertheless, there are risks associated with this cell therapy, including tumor formation, coagulation dysfunction, and vascular occlusion. Also, a growing number of studies suggest that the therapeutic effect after transplantation of MSCs is mainly attributed to MSC-derived exosomes (MSC-Exos). And this cell-free mediated therapy appears to circumvent many risks and difficulties when compared to cell therapy, and it may be the most promising new strategy for treating stroke as stem cell replacement therapy. Studies suggest that suppressing inflammation via modulation of the immune response is an additional treatment option for IS. Intriguingly, MSC-Exos mediates the inflammatory immune response following IS by modulating the central nervous system, the peripheral immune system, and immunomodulatory molecules, thereby promoting neurofunctional recovery after stroke. Thus, this paper reviews the role, potential mechanisms, and therapeutic potential of MSC-Exos in post-IS inflammation in order to identify new research targets.

Key Words: Mesenchymal stem cells, Exosomes, Ischemic stroke, Immunomodulation, Inflammation, Exosome therapy

Core Tip: Mesenchymal stem cell-derived exosomes (MSC-Exos) are an emerging strategy for treating ischemic stroke (IS) and have demonstrated certain achievements in animal studies. Here, we review and discuss the mechanisms of MSC-Exos in treating IS through immunomodulation, the current responses to the clinical limitations of MSC-Exos therapy, and the issues that need to be addressed in future MSC-Exos research.



withyou android app